Source code for labelbox.schema.project

import json
import time
import logging
from collections import namedtuple
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, Union, Iterable
from urllib.parse import urlparse
import requests
import ndjson

from labelbox import utils
from labelbox.schema.data_row import DataRow
from labelbox.orm import query
from labelbox.schema.bulk_import_request import BulkImportRequest
from labelbox.exceptions import InvalidQueryError, LabelboxError
from labelbox.orm.db_object import DbObject, Updateable, Deletable
from labelbox.orm.model import Entity, Field, Relationship
from labelbox.pagination import PaginatedCollection

    datetime.fromisoformat  # type: ignore[attr-defined]
except AttributeError:
    from backports.datetime_fromisoformat import MonkeyPatch

    from import LBV1Converter
except ImportError:

logger = logging.getLogger(__name__)

[docs]class Project(DbObject, Updateable, Deletable): """ A Project is a container that includes a labeling frontend, an ontology, datasets and labels. Attributes: name (str) description (str) updated_at (datetime) created_at (datetime) setup_complete (datetime) last_activity_time (datetime) auto_audit_number_of_labels (int) auto_audit_percentage (float) datasets (Relationship): `ToMany` relationship to Dataset created_by (Relationship): `ToOne` relationship to User organization (Relationship): `ToOne` relationship to Organization reviews (Relationship): `ToMany` relationship to Review labeling_frontend (Relationship): `ToOne` relationship to LabelingFrontend labeling_frontend_options (Relationship): `ToMany` relationship to LabelingFrontendOptions labeling_parameter_overrides (Relationship): `ToMany` relationship to LabelingParameterOverride webhooks (Relationship): `ToMany` relationship to Webhook benchmarks (Relationship): `ToMany` relationship to Benchmark ontology (Relationship): `ToOne` relationship to Ontology """ name = Field.String("name") description = Field.String("description") updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") setup_complete = Field.DateTime("setup_complete") last_activity_time = Field.DateTime("last_activity_time") auto_audit_number_of_labels = Field.Int("auto_audit_number_of_labels") auto_audit_percentage = Field.Float("auto_audit_percentage") # Relationships datasets = Relationship.ToMany("Dataset", True) created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization", False) labeling_frontend = Relationship.ToOne("LabelingFrontend") labeling_frontend_options = Relationship.ToMany( "LabelingFrontendOptions", False, "labeling_frontend_options") labeling_parameter_overrides = Relationship.ToMany( "LabelingParameterOverride", False, "labeling_parameter_overrides") webhooks = Relationship.ToMany("Webhook", False) benchmarks = Relationship.ToMany("Benchmark", False) ontology = Relationship.ToOne("Ontology", True)
[docs] def members(self): """ Fetch all current members for this project Returns: A `PaginatedCollection of `ProjectMember`s """ id_param = "projectId" query_str = """query ProjectMemberOverviewPyApi($%s: ID!) { project(where: {id : $%s}) { id members(skip: %%d first: %%d){ id user { %s } role { id name } } } }""" % (id_param, id_param, query.results_query_part(Entity.User)) return PaginatedCollection(self.client, query_str, {id_param: str(self.uid)}, ["project", "members"], ProjectMember)
[docs] def labels(self, datasets=None, order_by=None): """ Custom relationship expansion method to support limited filtering. Args: datasets (iterable of Dataset): Optional collection of Datasets whose Labels are sought. If not provided, all Labels in this Project are returned. order_by (None or (Field, Field.Order)): Ordering clause. """ Label = Entity.Label if datasets is not None: where = " where:{dataRow: {dataset: {id_in: [%s]}}}" % ", ".join( '"%s"' % dataset.uid for dataset in datasets) else: where = "" if order_by is not None: query.check_order_by_clause(Label, order_by) order_by_str = "orderBy: %s_%s" % (order_by[0].graphql_name, order_by[1].name.upper()) else: order_by_str = "" id_param = "projectId" query_str = """query GetProjectLabelsPyApi($%s: ID!) {project (where: {id: $%s}) {labels (skip: %%d first: %%d %s %s) {%s}}}""" % ( id_param, id_param, where, order_by_str, query.results_query_part(Label)) return PaginatedCollection(self.client, query_str, {id_param: self.uid}, ["project", "labels"], Label)
[docs] def export_queued_data_rows(self, timeout_seconds=120): """ Returns all data rows that are currently enqueued for this project. Args: timeout_seconds (float): Max waiting time, in seconds. Returns: Data row fields for all data rows in the queue as json Raises: LabelboxError: if the export fails or is unable to download within the specified time. """ id_param = "projectId" query_str = """mutation GetQueuedDataRowsExportUrlPyApi($%s: ID!) {exportQueuedDataRows(data:{projectId: $%s }) {downloadUrl createdAt status} } """ % (id_param, id_param) sleep_time = 2 while True: res = self.client.execute(query_str, {id_param: self.uid}) res = res["exportQueuedDataRows"] if res["status"] == "COMPLETE": download_url = res["downloadUrl"] response = requests.get(download_url) response.raise_for_status() return ndjson.loads(response.text) elif res["status"] == "FAILED": raise LabelboxError("Data row export failed.") timeout_seconds -= sleep_time if timeout_seconds <= 0: raise LabelboxError( f"Unable to export data rows within {timeout_seconds} seconds." ) logger.debug( "Project '%s' queued data row export, waiting for server...", self.uid) time.sleep(sleep_time)
[docs] def video_label_generator(self, timeout_seconds=120): """ Download video annotations Returns: LabelGenerator for accessing labels for each video """ _check_converter_import() json_data = self.export_labels(download=True, timeout_seconds=timeout_seconds) if json_data is None: raise TimeoutError( f"Unable to download labels in {timeout_seconds} seconds." "Please try again or contact support if the issue persists.") is_video = [ 'frames' in row['Label'] for row in json_data if row['Label'] ] if len(is_video) and not all(is_video): raise ValueError( "Found non-video data rows in export. " "Use project.export_labels() to export projects with mixed data types. " "Or use project.label_generator() for text and imagery data.") return LBV1Converter.deserialize_video(json_data, self.client)
[docs] def label_generator(self, timeout_seconds=60): """ Download text and image annotations Returns: LabelGenerator for accessing labels for each text or image """ _check_converter_import() json_data = self.export_labels(download=True, timeout_seconds=timeout_seconds) if json_data is None: raise TimeoutError( f"Unable to download labels in {timeout_seconds} seconds." "Please try again or contact support if the issue persists.") is_video = [ 'frames' in row['Label'] for row in json_data if row['Label'] ] if len(is_video) and any(is_video): raise ValueError( "Found video data rows in export. " "Use project.export_labels() to export projects with mixed data types. " "Or use project.video_label_generator() for video data.") return LBV1Converter.deserialize(json_data)
[docs] def export_labels(self, download=False, timeout_seconds=60): """ Calls the server-side Label exporting that generates a JSON payload, and returns the URL to that payload. Will only generate a new URL at a max frequency of 30 min. Args: timeout_seconds (float): Max waiting time, in seconds. Returns: URL of the data file with this Project's labels. If the server didn't generate during the `timeout_seconds` period, None is returned. """ sleep_time = 2 id_param = "projectId" query_str = """mutation GetLabelExportUrlPyApi($%s: ID!) {exportLabels(data:{projectId: $%s }) {downloadUrl createdAt shouldPoll} } """ % (id_param, id_param) while True: res = self.client.execute(query_str, {id_param: self.uid}) res = res["exportLabels"] if not res["shouldPoll"]: url = res['downloadUrl'] if not download: return url else: response = requests.get(url) response.raise_for_status() return response.json() timeout_seconds -= sleep_time if timeout_seconds <= 0: return None logger.debug("Project '%s' label export, waiting for server...", self.uid) time.sleep(sleep_time)
[docs] def export_issues(self, status=None): """ Calls the server-side Issues exporting that returns the URL to that payload. Args: status (string): valid values: Open, Resolved Returns: URL of the data file with this Project's issues. """ id_param = "projectId" status_param = "status" query_str = """query GetProjectIssuesExportPyApi($%s: ID!, $%s: IssueStatus) { project(where: { id: $%s }) { issueExportUrl(where: { status: $%s }) } }""" % (id_param, status_param, id_param, status_param) valid_statuses = {None, "Open", "Resolved"} if status not in valid_statuses: raise ValueError("status must be in {}. Found {}".format( valid_statuses, status)) res = self.client.execute(query_str, { id_param: self.uid, status_param: status }) res = res['project'] logger.debug("Project '%s' issues export, link generated", self.uid) return res.get('issueExportUrl')
[docs] def upsert_instructions(self, instructions_file: str): """ * Uploads instructions to the UI. Running more than once will replace the instructions Args: instructions_file (str): Path to a local file. * Must be either a pdf, text, or html file. Raises: ValueError: * project must be setup * instructions file must end with one of ".text", ".txt", ".pdf", ".html" """ if self.setup_complete is None: raise ValueError( "Cannot attach instructions to a project that has not been set up." ) frontend = self.labeling_frontend() frontendId = frontend.uid if != "Editor": logger.warning( f"This function has only been tested to work with the Editor front end. Found %s", supported_instruction_formats = (".text", ".txt", ".pdf", ".html") if not instructions_file.endswith(supported_instruction_formats): raise ValueError( f"instructions_file must end with one of {supported_instruction_formats}. Found {instructions_file}" ) lfo = list(self.labeling_frontend_options())[-1] instructions_url = self.client.upload_file(instructions_file) customization_options = json.loads(lfo.customization_options) customization_options['projectInstructions'] = instructions_url option_id = lfo.uid self.client.execute( """mutation UpdateFrontendWithExistingOptionsPyApi ( $frontendId: ID!, $optionsId: ID!, $name: String!, $description: String!, $customizationOptions: String! ) { updateLabelingFrontend( where: {id: $frontendId}, data: {name: $name, description: $description} ) {id} updateLabelingFrontendOptions( where: {id: $optionsId}, data: {customizationOptions: $customizationOptions} ) {id} }""", { "frontendId": frontendId, "optionsId": option_id, "name":, "description": "Video, image, and text annotation", "customizationOptions": json.dumps(customization_options) })
[docs] def labeler_performance(self): """ Returns the labeler performances for this Project. Returns: A PaginatedCollection of LabelerPerformance objects. """ id_param = "projectId" query_str = """query LabelerPerformancePyApi($%s: ID!) { project(where: {id: $%s}) { labelerPerformance(skip: %%d first: %%d) { count user {%s} secondsPerLabel totalTimeLabeling consensus averageBenchmarkAgreement lastActivityTime} }}""" % (id_param, id_param, query.results_query_part(Entity.User)) def create_labeler_performance(client, result): result["user"] = Entity.User(client, result["user"]) # python isoformat doesn't accept Z as utc timezone result["lastActivityTime"] = datetime.fromisoformat( result["lastActivityTime"].replace('Z', '+00:00')) return LabelerPerformance( ** {utils.snake_case(key): value for key, value in result.items()}) return PaginatedCollection(self.client, query_str, {id_param: self.uid}, ["project", "labelerPerformance"], create_labeler_performance)
[docs] def review_metrics(self, net_score): """ Returns this Project's review metrics. Args: net_score (None or Review.NetScore): Indicates desired metric. Returns: int, aggregation count of reviews for given `net_score`. """ if net_score not in (None,) + tuple(Entity.Review.NetScore): raise InvalidQueryError( "Review metrics net score must be either None " "or one of Review.NetScore values") id_param = "projectId" net_score_literal = "None" if net_score is None else query_str = """query ProjectReviewMetricsPyApi($%s: ID!){ project(where: {id:$%s}) {reviewMetrics {labelAggregate(netScore: %s) {count}}} }""" % (id_param, id_param, net_score_literal) res = self.client.execute(query_str, {id_param: self.uid}) return res["project"]["reviewMetrics"]["labelAggregate"]["count"]
[docs] def setup(self, labeling_frontend, labeling_frontend_options): """ Finalizes the Project setup. Args: labeling_frontend (LabelingFrontend): Which UI to use to label the data. labeling_frontend_options (dict or str): Labeling frontend options, a.k.a. project ontology. If given a `dict` it will be converted to `str` using `json.dumps`. """ organization = self.client.get_organization() if not isinstance(labeling_frontend_options, str): labeling_frontend_options = json.dumps(labeling_frontend_options) self.labeling_frontend.connect(labeling_frontend) LFO = Entity.LabelingFrontendOptions labeling_frontend_options = self.client._create( LFO, { LFO.project: self, LFO.labeling_frontend: labeling_frontend, LFO.customization_options: labeling_frontend_options }) timestamp ="%Y-%m-%dT%H:%M:%SZ") self.update(setup_complete=timestamp)
def validate_labeling_parameter_overrides(self, data): for idx, row in enumerate(data): if len(row) != 3: raise TypeError( f"Data must be a list of tuples containing a DataRow, priority (int), num_labels (int). Found {len(row)} items. Index: {idx}" ) data_row, priority, num_labels = row if not isinstance(data_row, DataRow): raise TypeError( f"data_row should be be of type DataRow. Found {type(data_row)}. Index: {idx}" ) for name, value in [["Priority", priority], ["Number of labels", num_labels]]: if not isinstance(value, int): raise TypeError( f"{name} must be an int. Found {type(value)} for data_row {data_row}. Index: {idx}" ) if value < 1: raise ValueError( f"{name} must be greater than 0 for data_row {data_row}. Index: {idx}" )
[docs] def set_labeling_parameter_overrides(self, data): """ Adds labeling parameter overrides to this project. See information on priority here: >>> project.set_labeling_parameter_overrides([ >>> (data_row_1, 2, 3), (data_row_2, 1, 4)]) Args: data (iterable): An iterable of tuples. Each tuple must contain (DataRow, priority<int>, number_of_labels<int>) for the new override. Priority: * Data will be labeled in priority order. - A lower number priority is labeled first. - Minimum priority is 1. * Priority is not the queue position. - The position is determined by the relative priority. - E.g. [(data_row_1, 5,1), (data_row_2, 2,1), (data_row_3, 10,1)] will be assigned in the following order: [data_row_2, data_row_1, data_row_3] * Datarows with parameter overrides will appear before datarows without overrides. * The priority only effects items in the queue. - Assigning a priority will not automatically add the item back into the queue. Number of labels: * The number of times a data row should be labeled. - Creates duplicate data rows in a project (one for each number of labels). * New duplicated data rows will be added to the queue. - Already labeled duplicates will not be sent back to the queue. * The queue will never assign the same datarow to a single labeler more than once. - If the number of labels is greater than the number of labelers working on a project then the extra items will remain in the queue (this can be fixed by removing the override at any time). * Setting this to 1 will result in the default behavior (no duplicates). Returns: bool, indicates if the operation was a success. """ self.validate_labeling_parameter_overrides(data) data_str = ",\n".join( "{dataRow: {id: \"%s\"}, priority: %d, numLabels: %d }" % (data_row.uid, priority, num_labels) for data_row, priority, num_labels in data) id_param = "projectId" query_str = """mutation SetLabelingParameterOverridesPyApi($%s: ID!){ project(where: { id: $%s }) {setLabelingParameterOverrides (data: [%s]) {success}}} """ % (id_param, id_param, data_str) res = self.client.execute(query_str, {id_param: self.uid}) return res["project"]["setLabelingParameterOverrides"]["success"]
[docs] def unset_labeling_parameter_overrides(self, data_rows): """ Removes labeling parameter overrides to this project. * This will remove unlabeled duplicates in the queue. Args: data_rows (iterable): An iterable of DataRows. Returns: bool, indicates if the operation was a success. """ id_param = "projectId" query_str = """mutation UnsetLabelingParameterOverridesPyApi($%s: ID!){ project(where: { id: $%s}) { unsetLabelingParameterOverrides(data: [%s]) { success }}}""" % ( id_param, id_param, ",\n".join( "{dataRowId: \"%s\"}" % row.uid for row in data_rows)) res = self.client.execute(query_str, {id_param: self.uid}) return res["project"]["unsetLabelingParameterOverrides"]["success"]
[docs] def upsert_review_queue(self, quota_factor): """ Sets the the proportion of total assets in a project to review. More information can be found here: Args: quota_factor (float): Which part (percentage) of the queue to reinitiate. Between 0 and 1. """ if not 0. < quota_factor < 1.: raise ValueError("Quota factor must be in the range of [0,1]") id_param = "projectId" quota_param = "quotaFactor" query_str = """mutation UpsertReviewQueuePyApi($%s: ID!, $%s: Float!){ upsertReviewQueue(where:{project: {id: $%s}} data:{quotaFactor: $%s}) {id}}""" % ( id_param, quota_param, id_param, quota_param) res = self.client.execute(query_str, { id_param: self.uid, quota_param: quota_factor })
[docs] def extend_reservations(self, queue_type): """ Extends all the current reservations for the current user on the given queue type. Args: queue_type (str): Either "LabelingQueue" or "ReviewQueue" Returns: int, the number of reservations that were extended. """ if queue_type not in ("LabelingQueue", "ReviewQueue"): raise InvalidQueryError("Unsupported queue type: %s" % queue_type) id_param = "projectId" query_str = """mutation ExtendReservationsPyApi($%s: ID!){ extendReservations(projectId:$%s queueType:%s)}""" % ( id_param, id_param, queue_type) res = self.client.execute(query_str, {id_param: self.uid}) return res["extendReservations"]
[docs] def enable_model_assisted_labeling(self, toggle: bool = True) -> bool: """ Turns model assisted labeling either on or off based on input Args: toggle (bool): True or False boolean Returns: True if toggled on or False if toggled off """ project_param = "project_id" show_param = "show" query_str = """mutation toggle_model_assisted_labelingPyApi($%s: ID!, $%s: Boolean!) { project(where: {id: $%s }) { showPredictionsToLabelers(show: $%s) { id, showingPredictionsToLabelers } } }""" % (project_param, show_param, project_param, show_param) params = {project_param: self.uid, show_param: toggle} res = self.client.execute(query_str, params) return res["project"]["showPredictionsToLabelers"][ "showingPredictionsToLabelers"]
[docs] def upload_annotations( self, name: str, annotations: Union[str, Path, Iterable[Dict]], validate: bool = True) -> 'BulkImportRequest': # type: ignore """ Uploads annotations to a new Editor project. Args: name (str): name of the BulkImportRequest job annotations (str or Path or Iterable): url that is publicly accessible by Labelbox containing an ndjson file OR local path to an ndjson file OR iterable of annotation rows validate (bool): Whether or not to validate the payload before uploading. Returns: BulkImportRequest """ if isinstance(annotations, str) or isinstance(annotations, Path): def _is_url_valid(url: Union[str, Path]) -> bool: """ Verifies that the given string is a valid url. Args: url: string to be checked Returns: True if the given url is valid otherwise False """ if isinstance(url, Path): return False parsed = urlparse(url) return bool(parsed.scheme) and bool(parsed.netloc) if _is_url_valid(annotations): return BulkImportRequest.create_from_url(client=self.client, project_id=self.uid, name=name, url=str(annotations), validate=validate) else: path = Path(annotations) if not path.exists(): raise FileNotFoundError( f'{annotations} is not a valid url nor existing local file' ) return BulkImportRequest.create_from_local_file( client=self.client, project_id=self.uid, name=name, file=path, validate_file=validate, ) elif isinstance(annotations, Iterable): return BulkImportRequest.create_from_objects( client=self.client, project_id=self.uid, name=name, predictions=annotations, # type: ignore validate=validate) else: raise ValueError( f'Invalid annotations given of type: {type(annotations)}')
[docs]class ProjectMember(DbObject): user = Relationship.ToOne("User", cache=True) role = Relationship.ToOne("Role", cache=True)
[docs]class LabelingParameterOverride(DbObject): """ Customizes the order of assets in the label queue. Attributes: priority (int): A prioritization score. number_of_labels (int): Number of times an asset should be labeled. """ priority = Field.Int("priority") number_of_labels = Field.Int("number_of_labels") data_row = Relationship.ToOne("DataRow", cache=True)
LabelerPerformance = namedtuple( "LabelerPerformance", "user count seconds_per_label, total_time_labeling " "consensus average_benchmark_agreement last_activity_time") LabelerPerformance.__doc__ = ( "Named tuple containing info about a labeler's performance.") def _check_converter_import(): if 'LBV1Converter' not in globals(): raise ImportError( "Missing dependencies to import converter. " "Use `pip install labelbox[data]` to add missing dependencies. " "or download raw json with project.export_labels()")